题目内容

在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.

(1)填空:

    ①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为                          );

②如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为            

(2)如图3,分别以锐角三角形的三边为边向外作正方形,点分别是这三个正方形的对角线交点,试分别利用之间的关系,运用旋转相似变换的知识说明线段之间的关系.

 

 

【答案】

(1)①(2)理由见解析

【解析】解:(1)①;························ 2分

;··································· 4分

(2)经过旋转相似变换,得到,此时,线段变为线段

                         ························· 6分

经过旋转相似变换,得到,此时,线段变为线段

······································ 8分

.   10分

这是阅读理解题①由题意可知

       ②由题意可知,,则,根据直角三角形所对的直角边等于斜边的一半,故

     (2)由题意可知,的相似比为的相似比为,旋转角为,考虑线段之间的关系,分两种数量关系和位置关系

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网