题目内容
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..
1.求证:ΔBEF ∽ΔCEG.
2.当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.
3.设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?
1.因为四边形ABCD是平行四边形, 所以 ···················································· 1分
所以
所以
2.的周长之和为定值.··································································· 4分
理由一:
过点C作FG的平行线交直线AB于H ,
因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH
因此,的周长之和等于BC+CH+BH
由 BC=10,AB=5,AM=4,可得CH=8,BH=6,
所以BC+CH+BH=24 ······························································································ 6分
理由二:
由AB=5,AM=4,可知
在Rt△BEF与Rt△GCE中,有:
,
所以,△BEF的周长是, △ECG的周长是
又BE+CE=10,因此的周长之和是24.
3.设BE=x,则
所以 ···································· 8分
配方得:.
所以,当时,y有最大值.············································································ 10分
最大值为.
【解析】略