题目内容

乘法公式的探究及应用:
(1)如图1所示,可以求出阴影部分的面积是
 
(写成两数平方差的形式).
(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是
 
(写成多项式乘法的形式).
精英家教网
(3)比较两图的阴影部分面积,可以得到乘法公式
 

(4)应用所得的公式计算:
(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
992
)(1-
1
1002
)
分析:(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;
(2)利用矩形公式即可求解;
(3)利用面积相等列出等式即可;
(4)利用平方差公式简便计算.
解答:解:(1)a2-b2
(2)(a+b)(a-b);

(3)a2-b2=(a+b)(a-b);

(4)原式=(1-
1
2
)(1+
1
2
)(1-
1
3
)(1+
1
3
)…(1-
1
99
)(1+
1
99
)(1-
1
100
)(1+
1
100
)

=
1
2
×
3
2
×
2
3
×
4
3
×…×
98
99
×
100
99
×
99
100
×
101
100

=
101
200
点评:本题综合考查了证明平方差公式和使用平方差公式的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网