题目内容
如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直经BD=6,连结CD、AO。 |
(1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; |
(1)连接BC交OA于E点 ∵AB、AC是⊙O的切线, ∴AB=AC, ∠1=∠2 ∴AE⊥BC ∴∠OEB=90。 ∵BD是⊙O的直径 ∴∠DCB=90。 ∴∠DCB=∠OEB ; ∴CD∥AO ; (2)∵CD∥AO ∴∠3=∠4 ∵AB是⊙O的切线,DB是直径 ∴∠DCB=∠ABO=90。 ∴△BDC∽△AOB |
练习册系列答案
相关题目