题目内容
温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,
①根据信息填表:
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.
(1)当n=200时,
①根据信息填表:
| A地 | B地 | C地 | 合计 |
产品件数(件) | x | | 2x | 200 |
运费(元) | 30x | | | |
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.
(1)填表见解析;有三种方案,分别是:方案一:A地40件,B地80件,C地80件;方案二:A地41件,B地77件,C地82件;方案三:A地42件,B地74件,C地84件;(2)221.
试题分析:(1)①根据n=200求出运往B第的件数,再分别乘以单价即可求出运往B地、C地的运费;
②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,然后求解得到x的取值范围,再根据x是正整数确定出运输方案;
(2)根据总运费列出算式并用x表示出n,再根据n不小于运往A、C两地的件数求出x的取值范围,然后根据一次函数的增减性求出n的最小值即可.
(1)①根据信息填表:
;
②由题意,得
,
解不等式①得,x≥40,
解不等式②得,x≤,
所以,40≤x≤,
∵x为整数,
∴x=40或41或42,
∴有三种方案,分别是:方案一:A地40件,B地80件,C地80件;
方案二:A地41件,B地77件,C地82件;
方案三:A地42件,B地74件,C地84件;
(2)由题意,得30x+8(n-3x)+50x=5800,
整理,得n=725-7x,
∵n-3x≥0,
∴725-7x-3x≥0,
解得x≤72.5,
又∵x≥0,
∴0≤x≤72.5且x为整数,
∵n随x的增大而减少,
∴当x=72时,n有最小值为725-7×72=221.
考点: 1.一次函数的应用;2.一元一次不等式组的应用.
练习册系列答案
相关题目