题目内容

已知抛物线。【小题1】<1>求抛物线顶点M的坐标;
【小题2】 <2>若抛物线与x轴的交点分别为点AB(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点Nx轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求St之间的函数关系式及自变量t的取值范围;
【小题3】 <3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.


【小题1】(1)顶点坐标
【小题2】(2)求与坐标轴的交点坐标ABC…………………………………2’
令y=-t代入BM直线解析式。…………………………………3’
将面积分割求。
  。。。。。。。。。。。。。。。各一分5
【小题3】(3)。。。。。。。。。。。。各一分8

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网