题目内容
【题目】在平面直角坐标系中,抛物线的对称轴为.
求的值及抛物线与轴的交点坐标;
若抛物线与轴有交点,且交点都在点,之间,求的取值范围.
【答案】(1) a=-1;坐标为,;(2).
【解析】
(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;
(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y<0,即-1-2+m<0;当x=-1时,y≥0,即-1+2+m≥0,然后解两个不等式求出它们的公共部分可得到m的范围.
根据题意得,解得,
所以抛物线的解析式为,
当时,,解得,,
所以抛物线与轴的交点坐标为,;
抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,
∵抛物线与轴的交点都在点,之间,
∴当时,,即,解得;
当时,,即,解得,
∴的取值范围为.
练习册系列答案
相关题目
【题目】某校八年级甲.乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:
(1)根据上图求出下表所缺数据:
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8 | 1.6 |
(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.