ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬¾ØÐÎABCDµÄ±ßADÔÚyÖáÕý°ëÖáÉÏ£¬µãA¡¢CµÄ×ø±ê·Ö±ðΪ£¨0£¬1£©¡¢£¨2£¬4£©£®µãP´ÓµãA³ö·¢£¬ÑØA?B?CÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£¬µ½µãCÍ£Ö¹£»µãQÔÚxÖáÉÏ£¬ºá×ø±êΪµãPµÄºá¡¢×Ý×ø±êÖ®ºÍ£®Å×ÎïÏß¾¹ýA¡¢CÁ½µã£®¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪM£¬½»Å×ÎïÏßÓÚµãR£®ÉèµãPµÄÔ˶¯Ê±¼äΪt£¨Ã룩£¬¡÷PQRµÄÃæ»ýΪS£¨Æ½·½µ¥Î»£©£®
£¨1£©ÇóÅ×ÎïÏ߶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©·Ö±ðÇót=1ºÍt=4ʱ£¬µãQµÄ×ø±ê£»
£¨3£©µ±0£¼t¡Ü5ʱ£¬ÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö±½Óд³öSµÄ×î´óÖµ£®
²Î¿¼¹«Ê½£ºÅ×ÎïÏßy=ax2+bx+cµÄ¶¥µã×ø±êΪ£¬£®
½â£º£¨1£©ÓÉÅ×ÎïÏß¾¹ýµãA£¨0£¬1£©£¬C£¨2£¬4£©£¬
µÃ£¬
½âµÃ£¬
¡àÅ×ÎïÏ߶ÔÓ¦µÄº¯Êý¹ØϵʽΪ£ºy=-x2+2x+1£®
£¨2£©µ±t=1ʱ£¬Pµã×ø±êΪ£¨1£¬1£©£¬
¡àQµã×ø±êΪ£¨2£¬0£©£®
µ±t=4ʱ£¬Pµã×ø±êΪ£¨2£¬3£©£¬
¡àQµã×ø±êΪ£¨5£¬0£©£®
£¨3£©¡ß0£¼t¡Ü5£¬
µ±0£¼t¡Ü2ʱ£¬S=£¨-t2+2t+1-1£©¡Á1£¬
S=-t2+t=-£¨t-4£©2+2£¬
¡ßt=4²»ÔÚ0£¼t¡Ü2ÖУ¬
¡àµ±t=2ʱ£¨ÈçͼËùʾ£©£¬SµÄ×î´óֵΪ1.5£»
µ±2£¼t¡Ü5ʱ£¬S=£¨5-t£©£¨2+t-2+1-2£©£¬
S=-t2+3t-=-£¨t-3£©2+2£¬
Òò´Ëµ±t=3ʱ£¬SµÄ×î´óֵΪ2£®
×ÛÉÏËùÊö£¬SµÄ×î´óֵΪ2£®
·ÖÎö£º£¨1£©ÓÉÓÚÅ×ÎïÏß¹ýA¡¢CÁ½µã£¬Òò´Ë¿É¸ù¾ÝA¡¢CµÄ×ø±êÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©µ±t=1ʱ£¬PÔÚABÉÏ£¬AP=1Òò´ËPµãµÄ×ø±êΪ£¨1£¬1£©£»Qµã×ø±êΪ£¨2£¬0£©£®
µ±t=4ʱ£¬´ËʱPÔÚBCÉÏ£¬ÇÒBP=4-AB=2£¬PµãµÄ×ø±êΪ£¨2£¬3£©£»QµãµÄ×ø±êΪ£¨5£¬0£©
£¨3£©±¾ÌâÒª·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º
¢Ùµ±PÔÚABÉÏʱ£¬¼´µ±0£¼t¡Ü2ʱ£¬AP=t£¬OQ=t+OA=t+1£¬MQ=t+1-t=1£¬½«PµÄºá×ø±ê¼´t´úÈëÅ×ÎïÏߵĽâÎöʽÖм´¿ÉÇó³öRµÄ×Ý×ø±êµÄÖµ¼´RMµÄ³¤£®½ø¶ø¿ÉÇó³öPRµÄ³¤£¬Óɴ˿ɸù¾ÝS¡÷RPQ=RP•MQ=PR£¬Çó³öSÓëtµÄº¯Êý¹Øϵʽ£¬½ø¶ø¿É¸ù¾Ýº¯ÊýµÄÐÔÖÊÇó³öSµÄ×î´óÖµ£®
¢Úµ±PÔÚBCÉÏʱ£¬¼´µ±2£¼t¡Ü5ʱ£¬BP=t-AB=t-2£¬PM=t-AB+OA=t-1£®¶ø´ËʱRÓëCÖغϣ¬Òò´ËRM=4£¬Òò´ËRP=5-t£¬¶ø
QM=OQ-AB=2+£¨t-2+1£©-2=t-1£®È»ºó¸ù¾Ý¢ÙµÄ·½·¨¼´¿ÉÇó³öSµÄ×î´óÖµ£®
µãÆÀ£º±¾Ìâ×ÅÖØ¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽÒÔ¼°¶þ´Îº¯ÊýµÄÓ¦Óã»ÔÚ£¨3£©ÌâÖÐÒª¸ù¾ÝPµãµÄ²»Í¬Î»ÖýøÐзÖÀàÌÖÂÛ£¬²»ÒªÂ©½â£®
µÃ£¬
½âµÃ£¬
¡àÅ×ÎïÏ߶ÔÓ¦µÄº¯Êý¹ØϵʽΪ£ºy=-x2+2x+1£®
£¨2£©µ±t=1ʱ£¬Pµã×ø±êΪ£¨1£¬1£©£¬
¡àQµã×ø±êΪ£¨2£¬0£©£®
µ±t=4ʱ£¬Pµã×ø±êΪ£¨2£¬3£©£¬
¡àQµã×ø±êΪ£¨5£¬0£©£®
£¨3£©¡ß0£¼t¡Ü5£¬
µ±0£¼t¡Ü2ʱ£¬S=£¨-t2+2t+1-1£©¡Á1£¬
S=-t2+t=-£¨t-4£©2+2£¬
¡ßt=4²»ÔÚ0£¼t¡Ü2ÖУ¬
¡àµ±t=2ʱ£¨ÈçͼËùʾ£©£¬SµÄ×î´óֵΪ1.5£»
µ±2£¼t¡Ü5ʱ£¬S=£¨5-t£©£¨2+t-2+1-2£©£¬
S=-t2+3t-=-£¨t-3£©2+2£¬
Òò´Ëµ±t=3ʱ£¬SµÄ×î´óֵΪ2£®
×ÛÉÏËùÊö£¬SµÄ×î´óֵΪ2£®
·ÖÎö£º£¨1£©ÓÉÓÚÅ×ÎïÏß¹ýA¡¢CÁ½µã£¬Òò´Ë¿É¸ù¾ÝA¡¢CµÄ×ø±êÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©µ±t=1ʱ£¬PÔÚABÉÏ£¬AP=1Òò´ËPµãµÄ×ø±êΪ£¨1£¬1£©£»Qµã×ø±êΪ£¨2£¬0£©£®
µ±t=4ʱ£¬´ËʱPÔÚBCÉÏ£¬ÇÒBP=4-AB=2£¬PµãµÄ×ø±êΪ£¨2£¬3£©£»QµãµÄ×ø±êΪ£¨5£¬0£©
£¨3£©±¾ÌâÒª·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º
¢Ùµ±PÔÚABÉÏʱ£¬¼´µ±0£¼t¡Ü2ʱ£¬AP=t£¬OQ=t+OA=t+1£¬MQ=t+1-t=1£¬½«PµÄºá×ø±ê¼´t´úÈëÅ×ÎïÏߵĽâÎöʽÖм´¿ÉÇó³öRµÄ×Ý×ø±êµÄÖµ¼´RMµÄ³¤£®½ø¶ø¿ÉÇó³öPRµÄ³¤£¬Óɴ˿ɸù¾ÝS¡÷RPQ=RP•MQ=PR£¬Çó³öSÓëtµÄº¯Êý¹Øϵʽ£¬½ø¶ø¿É¸ù¾Ýº¯ÊýµÄÐÔÖÊÇó³öSµÄ×î´óÖµ£®
¢Úµ±PÔÚBCÉÏʱ£¬¼´µ±2£¼t¡Ü5ʱ£¬BP=t-AB=t-2£¬PM=t-AB+OA=t-1£®¶ø´ËʱRÓëCÖغϣ¬Òò´ËRM=4£¬Òò´ËRP=5-t£¬¶ø
QM=OQ-AB=2+£¨t-2+1£©-2=t-1£®È»ºó¸ù¾Ý¢ÙµÄ·½·¨¼´¿ÉÇó³öSµÄ×î´óÖµ£®
µãÆÀ£º±¾Ìâ×ÅÖØ¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽÒÔ¼°¶þ´Îº¯ÊýµÄÓ¦Óã»ÔÚ£¨3£©ÌâÖÐÒª¸ù¾ÝPµãµÄ²»Í¬Î»ÖýøÐзÖÀàÌÖÂÛ£¬²»ÒªÂ©½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿