ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª4cm£¬¶¯µãP´ÓµãB³ö·¢£¬ÒÔ2cm/sµÄËٶȡ¢ÑØB¡úC¡úD·½Ïò£¬ÏòµãDÔ˶¯£»¶¯µãQ´ÓµãA³ö·¢£¬ÒÔ1cm/sµÄËٶȡ¢ÑØA¡úB·½Ïò£¬ÏòµãBÔ˶¯£®ÈôP¡¢QÁ½µãͬʱ³ö·¢£¬Ô˶¯Ê±¼äΪtÃ룮£¨1£©Á¬½ÓPD¡¢PQ¡¢DQ£¬Éè¡÷PQDµÄÃæ»ýΪS£¬ÊÔÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©µ±µãPÔÚBCÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚÕâÑùµÄt£¬Ê¹µÃ¡÷PQDÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö·ûºÏÌõ¼þµÄtµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÔµãPΪԲÐÄ£¬×÷¡ÑP£¬Ê¹µÃ¡ÑPÓë¶Ô½ÇÏßBDÏàÇУ®ÎÊ£ºµ±µãPÔÚCDÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚÕâÑùµÄt£¬Ê¹µÃ¡ÑPÇ¡ºÃ¾¹ýÕý·½ÐÎABCDµÄijһ±ßµÄÖеãÈô´æÔÚ£¬ÇëÇó³ö·ûºÏÌõ¼þµÄtµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¿É¸ù¾ÝÈý½ÇÐÎPQDµÄÃæ»ý=ÌÝÐÎABPDµÄÃæ»ý-Èý½ÇÐÎAQDµÄÃæ»ý-Èý½ÇÐÎBPQµÄÃæ»ýÀ´Çó½â£¬¸ù¾ÝP£¬QµÄËٶȣ¬¿ÉÒÔ±íʾ³öAQ¡¢BQ¡¢BP£¬ÄÇô¾ÍÄܱíʾ³öÁ½Ö±½ÇÈý½ÇÐεÄÖ±½Ç±ßÒÔ¼°ÌÝÐεÄÁ½µ×ºÍ¸ß£¬¿É¸ù¾Ý¸÷×ÔµÄÃæ»ý¼ÆË㹫ʽµÃ³öS¡¢tÖ®¼äµÄº¯Êý¹Øϵʽ£®
£¨2£©Òª·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£º
µ±PD=QDʱ£¬¸ù¾Ýб±ßÖ±½Ç±ß¶¨Àí£¬ÎÒÃǿɵóöÈý½ÇÐÎAQDºÍCPDÈ«µÈ£¬ÄÇô¿ÉµÃ³öCP=AQ£¬¿ÉÓÃʱ¼ät·Ö±ð±íʾ³öAQ¡¢CPµÄ³¤£¬È»ºó¿É¸ù¾ÝÁ½ÕߵĵÈÁ¿¹ØϵÇó³ötµÄÖµ£®
µ±PD=PQʱ£¬¿ÉÔÚÖ±½ÇÈý½ÇÐÎBPQºÍPDCÖУ¬¸ù¾Ý¹´¹É¶¨Àí£¬ÓÃBQ¡¢BP±íʾ³öPQ£¬ÓÃCP¡¢CD±íʾ³öPD£»BQ¡¢BP¡¢PC¶¼¿ÉÒÔÓÃtÀ´±íʾ£¬Óɴ˿ɵóö¹ØÓÚtµÄ·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ötµÄÖµ£®
µ±QD=PQʱ£¬·½·¨Í¬ÉÏ£®
£¨3£©Ó¦µ±¿¼ÂÇÁ½ÖÖÇé¿ö£º
¢ÙÔ²ÐÄP¾¹ýBCµÄÖе㣬Èç¹ûÉèÔ²ÓëBDÏàÇÐÓÚM£¬BCµÄÖеãÊÇE£¬ÄÇôPM=PE£¬¿ÉÓÃʱ¼ät±íʾ³öCPµÄ³¤£¬Ò²¾ÍÄܱíʾ³öDPµÄ³¤£¬ÄÇô¿ÉÒÔ¸ù¾Ý¹´¹É¶¨ÀíÔÚÖ±½ÇÈý½ÇÐÎCEPÖбíʾ³öPE2µÄ³¤£¬Ò²¾Í±íʾ³öÁËPM2µÄ³¤£¬È»ºó¸ù¾Ý¡ÏMDPµÄÕýÏÒÖµ±íʾ³öDP£¬PMµÄ¹Øϵ£¬Óɴ˿ɵóö¹ØÓÚtµÄ·½³Ì£¬½ø¶øÇó³ötµÄÖµ£®
¢ÚÔ²ÐÄP¾¹ýCDµÄÖе㣬Èç¹ýCDµÄÖеãÊÇE£¬ÄÇôPM=PE£¬ÔÚÖ±½ÇÈý½ÇÐÎDMPÖУ¬DP=2-°ë¾¶µÄ³¤£¬PM=°ë¾¶µÄ³¤£¬Òò´Ë¿É¸ù¾Ý¡ÏMDPµÄÕýÏÒº¯ÊýÇó³ö°ë¾¶µÄ³¤£¬È»ºóÓÃt±íʾ³öCP£¬¼´¿ÉÇó³ötµÄÖµ£®
£¨2£©Òª·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£º
µ±PD=QDʱ£¬¸ù¾Ýб±ßÖ±½Ç±ß¶¨Àí£¬ÎÒÃǿɵóöÈý½ÇÐÎAQDºÍCPDÈ«µÈ£¬ÄÇô¿ÉµÃ³öCP=AQ£¬¿ÉÓÃʱ¼ät·Ö±ð±íʾ³öAQ¡¢CPµÄ³¤£¬È»ºó¿É¸ù¾ÝÁ½ÕߵĵÈÁ¿¹ØϵÇó³ötµÄÖµ£®
µ±PD=PQʱ£¬¿ÉÔÚÖ±½ÇÈý½ÇÐÎBPQºÍPDCÖУ¬¸ù¾Ý¹´¹É¶¨Àí£¬ÓÃBQ¡¢BP±íʾ³öPQ£¬ÓÃCP¡¢CD±íʾ³öPD£»BQ¡¢BP¡¢PC¶¼¿ÉÒÔÓÃtÀ´±íʾ£¬Óɴ˿ɵóö¹ØÓÚtµÄ·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ötµÄÖµ£®
µ±QD=PQʱ£¬·½·¨Í¬ÉÏ£®
£¨3£©Ó¦µ±¿¼ÂÇÁ½ÖÖÇé¿ö£º
¢ÙÔ²ÐÄP¾¹ýBCµÄÖе㣬Èç¹ûÉèÔ²ÓëBDÏàÇÐÓÚM£¬BCµÄÖеãÊÇE£¬ÄÇôPM=PE£¬¿ÉÓÃʱ¼ät±íʾ³öCPµÄ³¤£¬Ò²¾ÍÄܱíʾ³öDPµÄ³¤£¬ÄÇô¿ÉÒÔ¸ù¾Ý¹´¹É¶¨ÀíÔÚÖ±½ÇÈý½ÇÐÎCEPÖбíʾ³öPE2µÄ³¤£¬Ò²¾Í±íʾ³öÁËPM2µÄ³¤£¬È»ºó¸ù¾Ý¡ÏMDPµÄÕýÏÒÖµ±íʾ³öDP£¬PMµÄ¹Øϵ£¬Óɴ˿ɵóö¹ØÓÚtµÄ·½³Ì£¬½ø¶øÇó³ötµÄÖµ£®
¢ÚÔ²ÐÄP¾¹ýCDµÄÖе㣬Èç¹ýCDµÄÖеãÊÇE£¬ÄÇôPM=PE£¬ÔÚÖ±½ÇÈý½ÇÐÎDMPÖУ¬DP=2-°ë¾¶µÄ³¤£¬PM=°ë¾¶µÄ³¤£¬Òò´Ë¿É¸ù¾Ý¡ÏMDPµÄÕýÏÒº¯ÊýÇó³ö°ë¾¶µÄ³¤£¬È»ºóÓÃt±íʾ³öCP£¬¼´¿ÉÇó³ötµÄÖµ£®
½â´ð£º½â£º£¨1£©µ±0¡Üt¡Ü2ʱ£¬¼´µãPÔÚBCÉÏʱ£¬
S=SÕý·½ÐÎABCD-S¡÷ADQ-S¡÷BPQ-S¡÷PCD=16-
•4•t-
•2t•£¨4-t£©-
•£¨4-2t£©•4=t2-2t+8£¬
µ±2£¼t¡Ü4ʱ£¬¼´µãPÔÚCDÉÏʱ£¬DP=8-2t£¬
S=
•£¨8-2t£©•4=16-4t£®
£¨2£©¢ÙÈôPD=QD£¬ÔòRt¡÷DCP¡ÕRt¡÷DAQ£¨HL£©£®
¡àCP=AQ£®¼´t=4-2t£¬½âµÃt=
£®
¢ÚÈôPD=PQ£¬ÔòPD2=PQ2£¬¼´42+£¨4-2t£©2=£¨4-t£©2+£¨2t£©2£®
½âµÃt=-4¡À4
£¬ÆäÖÐt=-4-4
£¼0²»ºÏÌâÒ⣬ÉáÈ¥£¬¡àt=-4+4
£®
¢ÛÈôQD=PQ£¬ÔòQD2=PQ2£¬¼´16+t2=£¨4-t£©2+£¨2t£©2£¬½âµÃt=0»òt=2£¬
¡àt=
»òt=-4+4
»òt=0»òt=2ʱ£¬¡÷PQDÊǵÈÑüÈý½ÇÐΣ®
£¨3£©µ±PÔÚCDÉÏÔ˶¯Ê±£¬Èô¡ÑP¾¹ýBCµÄÖеãE£¬Éè¡ÑPÇÐBDÓÚM£®
ÔòCP=2t-4£¬PM2=PE2=£¨2t-4£©2+22£®
¶øÔÚRt¡÷PMDÖУ¬ÓÉÓÚ¡ÏPDM=45¡ã£¬ËùÒÔDP=
PM£¬¼´DP2=2PM2£®
¡à£¨8-2t£©2=2[£¨2t-4£©2+22]£®
½âµÃt=¡À
£¬¸ºÖµÉáÈ¥£¬
¡àt=
£¬
Èô¡ÑP¾¹ýCDµÄÖе㣬¡ÑPµÄ°ë¾¶r=2£¨
-1£©£¬
¹Êt=2+
£¬
¹Êµ±µãPÔÚCDÉÏÔ˶¯Ê±£¬Èôt=
»ò2+
£¬Ôò¡ÑPÇ¡ºÃ¾¹ýÕý·½ÐÎABCDµÄijһ±ßµÄÖе㣮
S=SÕý·½ÐÎABCD-S¡÷ADQ-S¡÷BPQ-S¡÷PCD=16-
1 |
2 |
1 |
2 |
1 |
2 |
µ±2£¼t¡Ü4ʱ£¬¼´µãPÔÚCDÉÏʱ£¬DP=8-2t£¬
S=
1 |
2 |
£¨2£©¢ÙÈôPD=QD£¬ÔòRt¡÷DCP¡ÕRt¡÷DAQ£¨HL£©£®
¡àCP=AQ£®¼´t=4-2t£¬½âµÃt=
4 |
3 |
¢ÚÈôPD=PQ£¬ÔòPD2=PQ2£¬¼´42+£¨4-2t£©2=£¨4-t£©2+£¨2t£©2£®
½âµÃt=-4¡À4
2 |
2 |
2 |
¢ÛÈôQD=PQ£¬ÔòQD2=PQ2£¬¼´16+t2=£¨4-t£©2+£¨2t£©2£¬½âµÃt=0»òt=2£¬
¡àt=
4 |
3 |
2 |
£¨3£©µ±PÔÚCDÉÏÔ˶¯Ê±£¬Èô¡ÑP¾¹ýBCµÄÖеãE£¬Éè¡ÑPÇÐBDÓÚM£®
ÔòCP=2t-4£¬PM2=PE2=£¨2t-4£©2+22£®
¶øÔÚRt¡÷PMDÖУ¬ÓÉÓÚ¡ÏPDM=45¡ã£¬ËùÒÔDP=
2 |
¡à£¨8-2t£©2=2[£¨2t-4£©2+22]£®
½âµÃt=¡À
6 |
¡àt=
6 |
Èô¡ÑP¾¹ýCDµÄÖе㣬¡ÑPµÄ°ë¾¶r=2£¨
2 |
¹Êt=2+
2 |
¹Êµ±µãPÔÚCDÉÏÔ˶¯Ê±£¬Èôt=
6 |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÕý·½ÐεÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨£¬ÇÐÏßµÄÐÔÖʵÈ֪ʶµã£®Òª×¢Ò⣨2£©£¨3£©Öв»Í¬µÄÇé¿öÒª½øÐзÖÀàÌÖÂÛ£¬²»Òª¶ªµôÈκÎÒ»ÖÖÇé¿ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿