题目内容
【题目】“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为元/件,每天销售(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系;
(2)如果规定每天漆器笔筒的销售量不低于件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于元,试确定该漆器笔筒销售单价的范围.
【答案】(1);(2)销售单价为44元时,每天获取的利润最大,元;(3).
【解析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3490元时,对应x的值,根据增减性,求出x的取值范围.
(1)设
经过点
解得
故y与x的关系式为:
(2)30<
设利润为
∴x<50时,w随x的增大而增大,
∴当时,
(2)由题意,得
-10x+700≥260,
解得x≤44,
∴30<x≤44,
设利润为w=(x-30)y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=44时,w最大=-10(44-50)2+4000=3640,
答:当销售单价为44元时,每天获取的利润最大,最大利润是3640元;
(3)w-150=-10x2+1000x-21000-150=3490,
-10(x-50)2=-360,
x-50=±6,
x1=56,x2=44,
如图所示,由图象得:
当44≤x≤56时,捐款后每天剩余利润不低于3490元.
【题目】某校举行了创建全国文明城市知识竞赛活动,初一年级全体同学参加了竞赛.收集数据:现随机抽取初一年级30名同学“创文知识竞赛”成绩,分数如下(单位:分):
90 | 85 | 68 | 92 | 81 | 84 | 95 | 93 | 87 | 89 | 78 | 99 | 89 | 85 | 97 |
88 | 81 | 95 | 86 | 98 | 95 | 93 | 89 | 86 | 84 | 87 | 79 | 85 | 89 | 82 |
⑴请将图表中空缺的部分补充完整;
⑵学校决定表彰“创文知识竞赛”成绩在90分以上的同学,根据上表统计结果估计该校初一年级360人中,约有多少人将获得表彰;
⑶“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .