题目内容
如图,在Rt△AOB中,OA=OB=3
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为______.
2 |
连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=3
,
∴AB=
OA=6,
∴OP=
=3,
∴PQ=
=
=2
.
故答案为:2
.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=3
2 |
∴AB=
2 |
∴OP=
OA•OB |
AB |
∴PQ=
OP2-OQ2 |
32-12 |
2 |
故答案为:2
2 |
练习册系列答案
相关题目