题目内容
【题目】如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:
①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.
【答案】①③
【解析】
根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴∠EAP=∠BAC=45°,AP=BC=CP.
①在△AEP与△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正确;
②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;
③∵△AEP≌△CFP,同理可证△APF≌△BPE.
∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC,即2S四边形AEPF=S△ABC;正确;
④根据等腰直角三角形的性质,EF=PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置时EF≠AP,故④错误;
故答案为:①③.
练习册系列答案
相关题目