题目内容
在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N:
(1)如图1,试判断四边形PQMN为怎样的四边形,并证明你的结论;
(2)若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2):
①判断此时四边形PQMN的形状为______(直接写出你的结论)
②当AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)
(1)如图1,试判断四边形PQMN为怎样的四边形,并证明你的结论;
(2)若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2):
①判断此时四边形PQMN的形状为______(直接写出你的结论)
②当AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)
(1)连结AC、BD.
∵PQ为△ABC的中位线,
∴PQ
AC
同理MN
AC.
∴MN
PQ,
∴四边形PQMN为平行四边形;
(2)①四边形PQMN是菱形;
②过点D作DF⊥AB于F,则DF=3
又∵DF2+FB2=DB2
∴DB=
=3
∴由①知四边形PQMN是菱形,可计算得周长是6
.
∵PQ为△ABC的中位线,
∴PQ
∥ |
. |
1 |
2 |
同理MN
∥ |
. |
1 |
2 |
∴MN
∥ |
. |
∴四边形PQMN为平行四边形;
(2)①四边形PQMN是菱形;
②过点D作DF⊥AB于F,则DF=3
3 |
又∵DF2+FB2=DB2
∴DB=
(3
|
7 |
∴由①知四边形PQMN是菱形,可计算得周长是6
7 |
练习册系列答案
相关题目