题目内容
【题目】如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.
(1)求证:AP=AB;
(2)若OB=4,AB=3,求线段BP的长.
【答案】(1)答案见解析;(2)
【解析】
(1)欲证明AP=AB,只要证明∠APB=∠ABP即可;
(2)作OH⊥BC于H.在Rt△POC中,求出OP、PC、OH、CH即可解决问题.
(1)证明:∵OC=OB,
∴∠OCB=∠OBC,
∵AB是⊙O的切线,
∴OB⊥AB,
∴∠OBA=90°,
∴∠ABP+∠OBC=90°,
∵OC⊥AO,
∴∠AOC=90°,
∴∠OCB+∠CPO=90°,
∵∠APB=∠CPO,
∴∠APB=∠ABP,
∴AP=AB.
(2)解:作OH⊥BC于H.
在Rt△OAB中,∵OB=4,AB=3,
∴OA==5,
∵AP=AB=3,
∴PO=2.
在Rt△POC中,PC==2,
∵PCOH=OCOP,
∴OH==,
∴CH==,
∵OH⊥BC,
∴CH=BH,
∴BC=2CH=,
∴PB=BC-PC=-2=.
练习册系列答案
相关题目