题目内容
【题目】如图,点 P 是∠AOB 内部一定点
(1)若∠AOB=50°,作点 P 关于 OA 的对称点 P1,作点 P 关于 OB 的对称点 P2,连 OP1、OP2,则∠P1OP2=___.
(2)若∠AOB=α,点 C、D 分别在射线 OA、OB 上移动,当△PCD 的周长最小时,则∠CPD=___(用 α 的代数式表示).
【答案】100° 180°-2α
【解析】
(1)根据对称性证明∠P1OP2=2∠AOB,即可解决问题;
(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.利用(1)中结论,根据对称性以及三角形内角和定理即可解决问题;
(1)如图,
由对称性可知:∠AOP=∠AOP1,∠POB=∠BOP2,
∴∠P1OP2=2∠AOB=100°,
故答案为100°.
(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.
根据对称性可知:∠OP1C=∠OPC,∠OP2D=∠OPD,∠P1OP2=2∠AOB=2α.
∴∠CPD=∠OP1C+∠OP2D=180°-2α.
故答案为180°-2α.
练习册系列答案
相关题目
【题目】小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.
请将以下过程补充完整:
(1)判断这个函数的自变量x的取值范围是________________;
(2)补全表格:
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
(3)在平面直角坐标系中画出函数的图象:
(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);
(5)写出直线与函数的图象的交点坐标.