题目内容
已知a、b、c为实数,且ab |
a+b |
1 |
3 |
bc |
b+c |
1 |
4 |
ca |
c+a |
1 |
5 |
abc |
ab+bc+ca |
分析:要求
的值,可先求出其倒数的值,根据
=
,
=
,
=
,分别取其倒数即可求解.
abc |
ab+bc+ca |
ab |
a+b |
1 |
3 |
bc |
b+c |
1 |
4 |
ca |
c+a |
1 |
5 |
解答:解:将已知三个分式分别取倒数得:
=3,
=4,
=5,
即
+
=3,
+
=4,
+
=5,
将三式相加得;
+
+
=6,
通分得:
=6,
即
=
.
a+b |
ab |
b+c |
bc |
c+a |
ca |
即
1 |
a |
1 |
b |
1 |
b |
1 |
c |
1 |
c |
1 |
a |
将三式相加得;
1 |
a |
1 |
b |
1 |
c |
通分得:
ab+bc+ca |
abc |
即
abc |
ab+bc+ca |
1 |
6 |
点评:本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解.
练习册系列答案
相关题目