题目内容
【题目】如图①,若抛物线的顶点在抛物线上,抛物线的顶点在抛物线上,(点与点不重合),我们把这样的两条抛物线和,互称为“友好”抛物线.
(1)一条抛物线的“友好”抛物线有 条;
(2)如图②,已知抛物线与轴相交于点,点关于抛物线的对称轴的对称点为点,求以点为顶点的的“友好”抛物线的表达式;
(3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式.
【答案】(1)无数;(2);(3)
【解析】
(1)根据题目给的定义即可判断一条抛物线有无数条”友好”抛物线.
(2)先设出L4的解析式,求出L3的坐标轴和顶点坐标,再将顶点坐标代入L4的解析式中即可求解.
(3)根据两个抛物线的顶点都在对方抛物线上,列式求解即可.
(1)根据“友好”抛物线的定义,只需要确定原函数顶点和抛物线任意一点做“友好”抛物线的顶点即可作出“友好”抛物线,因此有无数条.
∴答案为:无数.
(2)把化为顶点式,得
顶点坐标为,
对称轴为
点坐标为,
点关于对称轴的对称点的坐标为,
设的解析式为,
把代入,得
.
解得.
的“友好”抛物线的表达式为:.
(3)由题意可得:,整理得,(a1+a2)(m-h)2=0,
∵顶点不重合,∴m≠h,
∴.
【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?