题目内容
15、一个矩形的面积是3(x2-y2),如果它的一边长为(x+y),则它的周长是
8x-4y
.分析:利用矩形的面积先求另一边的长,再根据周长公式求解.
解答:解:3(x2-y2)÷(x+y),
=3(x+y)(x-y)÷(x+y),
=3(x-y),
周长=2[3(x-y)+(x+y)],
=2(3x-3y+x+y),
=2(4x-2y),
=8x-4y.
所以它的周长是:8x-4y.
=3(x+y)(x-y)÷(x+y),
=3(x-y),
周长=2[3(x-y)+(x+y)],
=2(3x-3y+x+y),
=2(4x-2y),
=8x-4y.
所以它的周长是:8x-4y.
点评:此题考查整式的除法运算和加减运算,要注意平方差公式的运用.
练习册系列答案
相关题目