题目内容

【题目】如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C,D两点间的距离.

【答案】解:过点D作l1的垂线,垂足为F,

∵∠DEB=60°,∠DAB=30°,

∴∠ADE=∠DEB﹣∠DAB=30°,

∴△ADE为等腰三角形,

∴DE=AE=20,

在Rt△DEF中,EF=DEcos60°=20× =10,

∵DF⊥AF,

∴∠DFB=90°,

∴AC∥DF,

由已知l1∥l2

∴CD∥AF,

∴四边形ACDF为矩形,CD=AF=AE+EF=30,

答:C、D两点间的距离为30m.


【解析】利用等腰三角形的判定与性质求出DE,再由cos60°求出EF,进而求出AF.
【考点精析】根据题目的已知条件,利用两点间的距离的相关知识可以得到问题的答案,需要掌握同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网