题目内容
【题目】如图,以正方形的顶点为直角顶点,作等腰直角三角形,连接、,当、、三点在--条直线上时,若,,则正方形的面积是( )
A.B.C.D.
【答案】C
【解析】
由“ASA”可证△ABF≌△CBE,可得AF=CE=3,由等腰直角三角形的性质可得BH=FH=1,由勾股定理可求BC2=5,即可求正方形ABCD的面积
解:∵四边形ABCD是正方形,△BEF是等腰直角三角形
∴AB=BC,BE=BF,∠ABC=∠EBF=90°,
∴∠ABF=∠EBC,且AB=BC,BE=BF
∴△ABF≌△CBE(SAS)
∴AF=CE=3
如图,过点BH⊥EC于H,
∵BE=BF=,BH⊥EC
∴BH=FH=1
∴CH=EC-EH=2
∵BC2=BH2+CH2=5,
∴正方形ABCD的面积=5.
故选择:C.
练习册系列答案
相关题目
【题目】年月日是第个世界读书日,为迎接第个世界读书日的到来,某校举办读书分享大赛活动:大赛以“推荐分享”为主题,参赛者选择一本自己最喜欢的书,然后给该书写一段推荐语、一篇读书心得、举办一场读书讲座.大赛组委会对参赛者提交的推荐语、读书心得、举办的读书讲座进行打分(各项成绩均按百分制),综合成绩排名第一的选手将获得大赛一等奖.现有甲、乙两位同学的各项成绩如下表所示;
参赛者 | 推荐语 | 读书心得 | 读书讲座 |
甲 | |||
乙 |
(1)若将三项成绩的平均分作为参赛选手的综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.
(2)若“推荐语”“读书心得”“读书讲座”的成绩按确定综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.