题目内容
【题目】已知,,点在射线上,.
(1)如图 1,若,求的度数;
(2)把“°”改为“”,射线 沿射线 平移,得到,其它条件不变(如 图 2 所示),探究 的数量关系;
(3)在(2)的条件下,作,垂足为 ,与 的角平分线 交于点,若 , 用含 α 的式子表示(直接写出答案).
【答案】(1) 150°;(2) ∠OCD+∠BO'E=240°;(3) 30°+.
【解析】
(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;
(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;
(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.
解:(1)∵CD//OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-90°-120°=150°;
(2)如图2,过O点作OF//CD,
∴CD//OE,
∴OF∥OE,
∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,
∴∠OCD+∠BO'E=240°;
(3)∵CP是∠OCD的平分线,
∴∠OCP=∠OCD,
∴∠CPO'=360°-90°-120°-∠OCP
=150°-∠OCD
=150°-(240°-∠BO'E)
=30°+
【题目】如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )
A. ∠1=∠2B. ∠1=2∠2C. ∠1=3∠2D. ∠1=4∠2
【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
路程(千米) | 运费(元/吨千米) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?