题目内容
【题目】如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为( )
A. 50° B. 25° C. 15° D. 20
【答案】B
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.
在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PMAB,PNDC,PM∥AB,PN∥DC.
∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.
∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN25°.
故选B.
练习册系列答案
相关题目