题目内容
【题目】如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=( )
A.35°B.45°C.50°D.55°
【答案】A
【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数,根据余角的定义即可得到结果.
解:延长PF交AB的延长线于点G.
在△BGF与△CPF中,
,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点,
又∵∠BEP=90°,
∴EF=PG(直角三角形斜边上的中线等于斜边的一半),
∵PF=PG(中点定义),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,
∴∠FPC=55°,
∴∠EPF=35°,
∵EF=PF,
∴∠PEF=∠EPF=35°,
故选:A.
练习册系列答案
相关题目