题目内容
(2009•孝感模拟)定理:若x1、x2是关于x的一元二次方程x2+mx+n=0的两实根,则有x1+x2=-m,x1x2=n.请用这一定理解决问题:已知x1、x2是关于x的一元二次方程x2-2(k+1)x+k2+2=0的两实根,且(x1+1)(x2+1)=8,求k的值.
【答案】分析:根据一元二次方程的根与系数的关系知:x1+x2=2(k+1),x1x2=k2+2,代入(x1+1)(x2+1)=8,即x1x2+(x1+x2)+1=8代入即可得到关于k的方程,可求出k的值,再根据△与0的关系舍去不合理的k值.
解答:解:由已知定理得:x1x2=k2+2,x1+x2=2(k+1).
∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8.
即k2+2k-3=0,
解得:k1=-3,k2=1.
又∵△=4(k+1)2-4(k2+2)≥0.
解得:k≥,故k=-3舍去.
∴k的值为1.
点评:解题时不要只根据(x1+1)(x2+1)=8,求出k的值,而忽略△与零的关系.
解答:解:由已知定理得:x1x2=k2+2,x1+x2=2(k+1).
∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8.
即k2+2k-3=0,
解得:k1=-3,k2=1.
又∵△=4(k+1)2-4(k2+2)≥0.
解得:k≥,故k=-3舍去.
∴k的值为1.
点评:解题时不要只根据(x1+1)(x2+1)=8,求出k的值,而忽略△与零的关系.
练习册系列答案
相关题目
(2009•孝感模拟)宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如下表)
(1)填空:yA=______;yB=______;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.
x | 1 | 5 |
yA | 0.6 | 3 |
yB | 2.8 | 10 |
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.
(2009•孝感模拟)宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如下表)
(1)填空:yA=______;yB=______;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.
x | 1 | 5 |
yA | 0.6 | 3 |
yB | 2.8 | 10 |
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.